

Chairmen's invitation

"Biophotonics is a multidisciplinary research area that utilizes light-based technologies, in medicine and life science. The vision behind biophotonics is to gain a full understanding of the origin and molecular mechanisms of diseases to either prevent them or, at least, diagnose them early and precisely, followed by a treatment which is specifically adapted to individual needs." (by "Lighting the way ahead", Photonics21 Strategic Research Agenda, 2010)

Dear Participants to the IEEE BioPhotonics conference,

After the success of the first international IEEE BioPhotonics Workshop (Parma, Italy 2011) and the second one (Taipei, Taiwan, 2013), the Institute of Applied Physics of the National Research Council of Italy and the IEEE Italy Section are pleased to welcome you to the third appointment of the series.

From the beginning of the International Workshop BioPhotonics2011 organization, it has been clear that talking about biophotonics would have meant to gather scientists with many different experiences, competences and background to cover all different aspects of this new and emerging field.

The IEEE BioPhotonics meetings has been established as a high-level meeting in the area of light-based techniques for medicine, life science, agriculture, environmental science and many other areas of application. Being at BioPhotonics2015 is thus a unique opportunity to interact with a multidisciplinary and fertile forum of experts, where researchers and professionals exchange their specific knowledge and experiences.

The conference will have three Plenary Sessions with keynote speakers from all over the word and fourteen further oral sessions plus two poster ones and an exhibitor showcase. The main topics comprise: diagnostics and therapeutics applications; imaging; integrated optical devices; microscopy; modeling; nano biophotonics; optofluidic platforms; sensing and plasmonic platforms; spectroscopy. More than thirty invited speakers will enrich the conference presenting the activity of important European and international research groups. Also, a joint session with ICOB 2015 will take place in the afternoon of May 20th within the so-called "Florence Biophotonics Week".

We are confident that between abstracts, technical sessions, food and city tours, all participants will contribute to lead a very rewarding conference.

Have a great time in Florence at IEEE BioPhotonics2015!

Roberto Pini Stefano Selleri

BioPhotonics 2015

Florence, Italy May 20-22, 2015

Conference Chairs

Roberto Pini, Institute of Applied Physics-CNR Florence (Italy) **Stefano Selleri**, University of Parma (Italy)

Steering Committee

Roberto Pini, Conference Chairman, Institute of Applied Physics-CNR Florence (Italy)
Stefano Selleri, Conference Chairman, Chair of IEEE Photonics Society Italy Chapter, University of Parma (Italy)
Ermanno Cardelli, Chair of IEEE Italy Section, University of Perugia (Italy)
Francesco Baldini, SIOF, Institute of Applied Physics-CNR Florence (Italy)

Technical-Scientific Committee

Peter E. Andersen, Technical University of Denmark (Denmark)
Romeo Bernini, Institute for Electromagnetic Sensing of the Environment-CNR (Italy)
Annamaria Cucinotta, University of Parma (Italy)
Pietro Ferraro, Istituto di Cibernetica "E. Caianiello"-CNR Naples (Italy)
Maria Minunni, University of Florence (Italy)
Lorenzo Pavesi, University of Trento (Italy)
Francesco S. Pavone, LENS and University of Florence (Italy)
Stavros Pissadakis, Foundation for Research and Technology Hellas - FORTH, Crete (Greece)
Juergen Popp, Leibniz Institute of Photonic Technology, Jena (Germany)
Roberto Rella, Institute for Microelectronic and Microsystems-CNR, Lecce (Italy)
Francesca Rossi, Institute of Applied Physics-CNR Florence (Italy)
Roberto Sabella, Ericsson e Distretto Toscano FORTIS (Italy)

Local Organizing Committee

Lucia Cavigli Francesca Tatini Alessandro Agostini Lucia Benelli Chiara Berrettoni Fulvia Ciurlia Giovanna Diprima Chiara Liserani Von Berger

Conference Venue

Area di Ricerca di Firenze - CNR Via Madonna del Piano 50019 Sesto Fiorentino Building F - Meeting center

For Information

http://biophotonics2015.ifac.cnr.it InfoBioPhotonics2015@ifac.cnr.it

Technical Program

Wednesday 20th May 2015

08:00-08:45 Registration

08:45-08:55 Welcome

Plenary I- Aula Magna

08:55-09:20 We1.1 (Invited)

4D Nanoscopy 2.0. A Great Immediate Challenge,

Diaspro, A.¹

¹NanoBioPhotonics, Istituto Italiano di Tecnologia, Department of Physics, Università di Genova, Nikon Imaging Center, NIC@IIT, Genova (Italy)

09:20-09:45 We1.2 (Invited)

Accelerating Progress in Light Sheet Microscopy,

<u>Dholakia, K</u>.

¹SUPA, University of St. Andrews, North Heugh, Fife (UK) Shaped light fields namely propagation invariant ('non-diffracting') light fields and complex beam shaping. This talk will describe such fields and look at their application to single plane illumination (light sheet) microscopy (SPIM). This modality uses orthogonal detection for rapid imaging of large, three-dimensional, samples of living tissue. Illumination with a thin sheet of light ensures high contrast by minimizing the fluorescent background.

09:45-10:10 We1.3 (Invited)

Quantitative Spectrally Resolved Optoacoustic Imaging,

Gerrit Held¹, Tigran Petrosyan¹, H. Günhan Akarçay¹, Linda Ahnen², Martin Wolf², Michael Jaeger¹, and <u>Martin Frenz¹</u>

¹Institute of Applied Physics, University of Bern, Bern (Switzerland), ²University Hospital Zuerich, University of Zuerich, Zuerich (Switzerland) Spectral quantitative optoacoustic imaging is based on the knowledge of the local fluence distribution, which can experimentally be determined either by near-infrared imaging or by single point illumination optoacoustic imaging. Phantom experiments show that both techniques allow to quantitatively retrieve the spectral information of embedded absorbers.

10:10-10:30 Coffee Break

Parallel Sessions

We2: Spectroscopy and Imaging I - Aula Magna

10:30-10:55 We2.1 (Invited)

Shedding New Light on Cells with Coherent Multiphoton Microscopy, Borri, P.¹

¹School of Biosciences, Cardiff University, Cardiff (UK)

We have developed in our laboratory several home-built CARS microscopes featuring innovative excitation/detection schemes. Furthermore we have invented and demonstrated a novel imaging modality, based on the resonant Four-Wave Mixing (FWM) of colloidal nanoparticles. I will present our latest progress with both techniques and their applications to cell imaging

10:55-11:20 We2.2 (Invited)

Fluorescent Imaging of Tumor Metabolic State,

<u>Zagaynova, E.</u>¹

¹Nizhny Novgorod State medical academy, Nizhny Novgorod (Russia)

11:20-11:35 We 2.3

Three-Dimensional Imaging of Entire Murine Intestine with Light Sheet Microscopy,

Daniela De Stefano¹, Ilenia Sana¹, Luigi Maiuri¹, Giulio Simonutti², Alessia Candeo², Gianluca Valentini¹, Andrea Bassi²

¹IERFC, Fondazione ONLUS, Ospedale San Raffaele, Milan (Italy), ²Dipartimento di Fisica, Politecnico di Milano, Milan (Italy)

Murine organs such as intestine tissue can be imaged with Light Sheet Microscopy in depth at high resolution, but accumulating a large dataset, difficult to process and interpret. We developed a processing routine to virtually unfold the sample, observe it layer-by-layer, identify distinct villi and statistically compare multiple samples.

11:35-11:50 We2.4

Multispot Multiphoton Ca2+ Imaging in Acute Myocardial Slices,

Giulia Borile^{1,4}, Claudio de Mauro², Andrea Urbani^{1,4}, Domenico Alfieri², Francesco S. Pavone³, Marco Mongillo^{1,4}

¹University of Padova, Department of Biomedical Science, Padova (Italy), ²Light4Tech Firenze s.r.l., Scandicci, Florence (Italy), ³University of Florence, Department of Physics, Sesto F.no (Italy), ⁴Venetian Institute of Molecular Medicine, Padova (Italy)

Multispot multiphoton microscopy (MMM) has been applied for the first time to image Ca2+ dynamics in myocardial tissue. We demonstrated that MMM parallel scanning with 16 laser beamlets enables the investigation of fast occurring Ca2+ dependent signals in the living cells within intact heart slices.

11:50-12:05 We2.5

Femtosecond Stimulated Raman Spectroscopy and Preliminary Steps for Nonlinear Microscopy,

A. D'Arco^{1,2}, M. Indolfi¹, M. A. Ferrara¹, L. Zeni², I. Rendina¹, L. Sirleto¹ National Research Council(CNR) - Institute for Microelectronics and

Microsystems, Naples (Italy), ²Second university of Naples (SUN), Department of Information Engineering, Naples (Italy)

SRS is a shot_noise limited highly sensitive tool of vibrational spectroscopy. SRS is free from the non-resonant background, exhibits an identical spectrum as the spontaneous Raman, it is linearly proportional to the concentration of the analyte. In this paper we describe the realization of a SRS nonlinear microscope and we discuss the main experimental issue for its implementation

12:05-12:20 We2.6

Wavelet Filter for Femtosecond Stimulated Raman Spectroscopy: a New Approach Brings New Horizons,

Miroslav Kloz^{1,2}, Jörn Weissenborn¹, Yusaku Hontani¹, John T.M. Kennis¹ ¹Department of Physics, VU University, Amsterdam (The Netherlands) ²Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project Prague (Czech Republic)

We developed an innovative way of performing femtosecond stimulated Raman experiment. Instead of using narrowband pulses we use shaped broadband pulses. In this way the signal to noise ratio and fidelity of experiments rises by at least a one order of magnitude.

We3: Diagnostics and Therapeutics Applications I- Room 2

10:30-10:55 We3.1 (Invited)

Optical Assessment of Blood Microrheology in Norm, Disease and at Interaction with Nanoparticles,

<u>A.V. Priezzhev</u>^{1,2}, A.E. Lugovtsov¹, S.Yu. Nikitin^{1,2}, K. Lee¹, V.D. Ustinov³, O.E. Fadyukov^{1,4}, M.D. Lin⁴, V.B. Koshelev⁴, Yu.I. Gurfinkel⁵, M. Kinnunen⁶, C.-L. Cheng⁷, E.V. Perevedentseva⁷, A.V. Karmenyan^{7,8} ¹Physics Faculty, Lomonosov Moscow State University, Moscow (Russia), ²International Laser Centre, Lomonosov Moscow State University, Moscow (Russia), ³Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow (Russia), ⁴Faculty of Medicine, Lomonosov Moscow State University, Moscow (Russia), ⁵Research Clinical Center of JSC «Russian Railways», Moscow (Russia), ⁶University of Oulu, Oulu (Finland) ⁷National Dong Hwa, University, Hualien (Taiwan), ⁸National Yang-Ming University, Taipei (Taiwan)

Possibilities to optically assess the major parameters of blood microrheology and microcirculation in norm, disease and at interaction with nanoparticles are demonstrated. Possibilities of using them as optical biomarkers of diseases (e.g., diabetes and hypertension), or of the consequences of interaction of blood components with nanoparticles are discussed.

10:55-11:20 We3.2 (Invited)

Optical Techniques for Distant Assessment of Human Skin, <u>Spigulis, J.</u>¹

¹Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga (Latvia)

Three optical techniques for distant mapping of skin diagnostic indices, chromopores, fluorophores and microcirculation parameters are discussed. The technologies have been implemented in experimental prototype devices and are validated in laboratory and clinics.

11:20-11:35 We3.3

Complex Optical Method of Cancer Detection and Visualization,

Ivan A. Bratchenko¹, Dmitry N. Artemyev¹, Oleg O. Myakinin¹, Julia A. Khristophorova¹, Dmitry V. Kornilin¹, Alexander A. Moryatov², Valery P. Zakharov¹, Sergey V. Kozlov²

¹Samara State Aerospace University, Samara (Russia), ²Samara State Medical University, Samara (Russia)

Complex investigation of malignant tumours diagnosis was performed involving combined optical coherence tomography, Raman spectroscopy and fluorescence analysis. Combined setup was used for common skin and lung malignant tumours in vivo and ex vivo analysis and for precise tissue morphology visualization. The complex method could identify cancers with >90% accuracy.

11:35-11:50 We3.4

Laboratory Full-Field Transmission X-Ray Microscopy and Applications in Life Science,

C.Seim^{1,2}, A. Dehlinger^{1,2}, B. Kanngießer^{1,3}, K.Reineke⁴, H. Stiel^{1,2} ¹Berlin Laboratory for innovative X-ray technologies (BLiX), Berlin (Germany), ²Max-Born-Institut, Berlin (Germany), ³Technische Universität Berlin, Institut für Optik und Atomare Physik, Berlin (Germany), ⁴Leibniz-Institut für Agrartechnik Potsdam- Potsdam (Germany)

Zone plate based soft X-ray microscopy in the water window offers resolution in the nanometer regime combined with natural contrast and a high penetration depth for hydrated samples. This enables nanoscale investigations of biological objects in three dimensions

11:50-12:05 We3.5

Towards Next Generation Time-Domain Devices for Increasing Depth Sensitivity in Diffuse Optics,

Andrea Farina¹, Alberto Dalla Mora², Davide Contini², Simon R. Arridge³, Fabrizio Martelli⁴, Alberto Tosi⁵, Gianluca Boso⁵, Turgut Durduran⁶, Edoardo Martinenghi², Alessandro Torricelli², Antonio Pifferi^{1,2}

¹Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan (Italy), ²Dipartimento di Fisica, Politecnico di Milano, Milan (Italy), ³Department of Computer Science, University College London, London (UK), ⁴Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Florence (Italy), ⁵Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy), ⁶ICFO-Institut de Cències Fotòniques, Castelldefels, Barcelona (Spain).

We present and validate a miniaturised Time-Domain (TD) probe, embedding a pulsed Vertical-Cavity Surface-Emitting Laser (VCSEL), and a Single-Photon Avalanche Diode (SPAD) or a Silicon Photomultiplier (SiPM). These technologies show the way towards compact and wearable TD probes with orders of magnitude reduction in size and cost.

12:05-12:20 We3.6

Field-portable and Cost-effective Devices for Biological and Chemical Assays,

Annamaria Cucinotta¹, Stefano Selleri¹, Alessandro Tonelli², Alessandro Candiani², Michele Sozzi²

¹Information Enginnering Department, University of Parma, Parma (Italy), ²DNAPhone S.R.L., Parma (Italy)

Consumer electronics is dramatically boosting the employment of smart, low cost devices for specific tasks like chemical assays. The results presented herein are focused on the successful application of the credit-card sized computer Raspberry Pi and customized optics to food chemistry assays. The developed device exhibited comparable results with laboratory-based approaches.

12:20-13:20 Lunch

13:30-13:45 Transfer Villa La Quiete

Joint Session with ICOB2015	
14:00-16:30	Success Stories
Chairs: Deni	nis Matthews, Quingmin Luo
Speakers:	
14:00-14:30	Lorenzo Targetti
14:30-15:00	David Sampson
15:00-15:30	Juergen Popp
15:30-16:00	Antonio Pifferi
16:00–16:30	Sailing He
16:30:17:30	Coffee Break
17:30-18:45	Success Stories
Chairs: Robe	erto Pini, Sailing He
Speakers:	
17:00-17:30	Dennis Matthews, UC Davis Health System
17:30-18:00	Turgut Durduran, Institute of Photonic Science
18:00-18:30	Qingmin Luo, Britton Chance Center for Biomedical Photonics
18:30-18:45	Laura Marcu, UC Davis Biomedical Enginieerring
18:45-19:00	ICOB2015 Closing remarks
19:15-19:30	Transfer downtown Florence
10.00.00.00	

- 19:30-20:30 Welcome Cocktail at Caffetteria delle Oblate
- 21:00-22:00 Special event celebrating the **International Year of Light 2015** at Biblioteca delle Oblate

Thursday 20th May 2015

08:00-08:30 Registration

Plenary II- Aula Magna

08:30-08:55 Th1.1 (Invited)

Biosensing with Silicon Photonics,

Paolo Bettotti¹, Tatevik Chalyan¹, Davide Gandolfi¹, Mher Ghulinyan², Romain Guider¹, Laura Pasquardini³, Cecilia Pederzolli³, Georg Pucker², Fernando Ramiro Manzano¹, AlinaSamusenko², Marina Scarpa¹, Lorenzo Pavesi¹ ¹Nanoscience Laboratory, Department of Physics, University of Trento, Trento, (Italy), ²Center for Material and Microsystems, Bruno Kessler Foundation, Trento (Italy), ³LaBSSAH, Fondazione Bruno Kessler, Povo (Italy) Silicon photonics based biosensors are reviewed with examples for sensing proteins, allergens and aflatoxin in milk

08:55-09:20 Th1.2(Invited)

Compact, Semiconductor-based Light Sources for Biophotonics, <u>Peter Andersen¹</u>,

¹Technical University of Denmark (Denmark)

09:20-09:45 Th1.3 (Invited)

Optimization of Metal Nano-Materials for the Development of LSPR-Based Optical Fibre Sensors

<u>T Sun</u>¹, M H Tu¹, J Cao¹ and K T V Grattan¹

¹School of Mathematics, Computer Science and Engineering, City University London (UK)

This paper is focused on the development of localised surface plasmon resonance (LSPR)based optical fibre sensors, through the optimization of the coated metal nano-materials. The highest sensitivity of an LSPR sensor coated with gold hollow nanocages has been demonstrated to be ~1933 nm/RIU.

09:45-10:05 Coffee Break

Parallel Sessions

Th2: Diagnostics and Therapeutics Applications II - Aula Magna

10:05-10:30 Th2.1 (Invited)

Corneal Transparency, Light Scattering and Coherence Loss,

<u>Karsten Plamann¹</u>, Fatima Alahyane¹, Emmanuel Beaurepaire², Zacaria Essaïdi¹

¹Laboratoire d'optique appliquée, ENSTA ParisTech –École polytechnique – CNRS Palaiseau cedex (France), ²Laboratoire d'optique et biosciences, École polytechnique –CNRS –Inserm, 91128 Palaiseau (France)

In earlier studies we have worked on light scattering in cornea in order to improve laser surgical methods. We here present new optical measurements on porcine cornea based on digital holography and third harmonic generation in view of identifying specific light scattering mechanisms and quantifying their impact on corneal transparency

10:30-10:55 Th2.2 (Invited)

Automatic Temperature Guided Retinal Photocoagulation,

<u>R. Brinkmann^{1,2}</u>, A. Baade^{1,2}, S. Koinzer³, W. Schwarzer^{1,2}, K.Schlott^{1,2}, Y. Miura², J. Roider³

¹Medical Laser Center Lübeck, Lübeck (Germany), ²Institute of Biomedical Optics, University of Lübeck, Lübeck (Germany), ³Department of Ophthalmology, University of Kiel, Kiel (Germany)

The strengths of retinal photocoagulation lesions are automatically controlled by means of an optoacoustic based feedback technique, which acquires the temperature rise in realtime. The technique was investigated on rabbits by using different initial laser parameter. Lesions were evaluated by a fundus camera with respect to uniform lesion sizes.

10:55-11:10 Th2.3

Gas in Scattering Media Absorption Spectroscopy for Sinusitis and Otitis Diagnostics,

Hao Zhang¹, Jing Huang¹, Tianqi Li¹, HuiyingLin¹, Katarina Svanberg^{1,2} and Sune Svanberg^{1,2}

¹Center of Optical and Electromagnetic Research, South China Normal University, Guangzhou (China), ²Lund Laser Centre, Lund University, Lund (Sweden)

We use tuneable diode laser spectroscopy to non-invasively study free gas in human sinus cavities and the middle ear. Good signal stability was found in healthy sinus volunteers, and the possibility to assess free gas through the ear drum in back-scattering geometry was established in phantom experiments.

11:10-11:25 Th2.4

Fluorescence Spectroscopy of Blood Plasma of Patients with Diabetes Mellitus,

Evgeny Shirshin¹, Tatiana Tikhonova², Victor Fadeev¹ and Alexander Priezzhev^{1,2}

¹M.V. Lomonosov Moscow State University, Physical Department, Moscow

(Russia), ²M.V. Lomonosov Moscow State University, International Laser Center, Moscow (Russia)

We present the results of the investigation of blood plasma of patients with diabetes mellitus using steady-state and time-resolved fluorescence spectroscopy aimed at the development of fluorescence indicators of metabolic syndrome

11:25-11:40 Th2.5

Estimation of Tissue Optical Properties between Different Grades and Stages of Urothelial Carcinoma Using Reflectance Spectroscopy,

Suresh Anand¹, Riccardo Cicchi^{1,2}, Fabrizio Martelli³, Alfonso Crisci⁴, Gabriella Nesi⁴, Marco Carini⁴, Francesco S. Pavone^{1,2,3}

¹European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino (Italy), ²National Institute of Optics, National Research Council (INO-CNR), Florence (Italy), ³Department of Physics, University of Florence, Sesto Fiorentino (Italy), ⁴Division of Urology, Department of Surgical and Medical Critical Area, University of Florence, Florence (Italy)

11:40-11:55 Th2.6

Characterization of Tumour Laser Ablation Probes with Temperature Measuring Capabilities,

Yu Liu¹, Hao Yu¹, Riccardo Gassino¹, Andrea Braglia¹, Massimo Olivero¹, Daniele Tosi², Alberto Vallan¹, Guido Perrone¹

¹Dept. of Electronics and Telecommunications, Politecnico di Torino, Torino (Italy), ²School of Engineering, Nazarbayev University, Astana (Kazakhstan) The paper reports on the development and characterization of an innovative all-optical laser delivery fibre probe for cancer cell ablation with simultaneous temperature sensing capabilities. The probe integrates grating-based temperature sensors and a microstructured tip surface for adapting the beam diffusion to the tumour geometry.

11:55-12:10 Th2.7

CO₂ and Nd: YAP Lasers Irradiation on CAD/CAM Ceramics: SEM, EDS and Thermal Studies,

Ahmed El Gamal¹, Carlo Fornaini^{1,2,3}, Jean Paul Rocca^{1,2}, Omid Muhamad¹, Etienne Medioni^{1,2}, Annamaria Cucinotta³, Nathalie Brulat-Bouchard² ¹Micoralis laboratoy EA 7354, University of Nice Sophia Antipolis, Nice (France), ²Restorative Dentistry and Endodontics Department, Faculty of Dentistry, University of Nice-Sophia Antipolis, Nice (France), ³Information Engineering Department, University of Parma, Parma (Italy) To investigate the interaction of infrared light on CAD/CAM ceramics surfaces, sixty CAD/CAM ceramic discs were prepared and divided into two different groups: lithium disilicate ceramics and Zirconium ceramics and irradiated with CO, laser and Nd: YAP

laser at 10W. Both the two wavelengths modify CAD/CAM surface without chemical composition modification

Th3: Sensing and Optofluidic Platforms - Room 2

10:05-10:30 Th3.1 (Invited)

Photonics-Enhanced Polymer Optofluidic Chips: from High-Tech Prototyping Platform to Applications,

<u>Heidi Ottevaere</u>¹, Diane De Coster¹, Jürgen Van Erps¹, Michael Vervaeke¹, Hugo Thienpont¹

¹Vrije Universiteit Brussel, Department of Applied Physics and Photonics, Brussels Photonics Team (B-PHOT), Pleinlaan 2, B-1050 Brussels (Belgium) We will highlight versatile photonics-enhanced polymer optofluidic chips fabricated with our high-tech prototyping platform and developed for absorbance, fluorescence and Raman spectroscopy measurements. These chips pave the way towards multifunctional, low-cost, portable, robust, and, ultimately, disposable lab-on-a-chip systems that can be used in the field and for point-of-care diagnostic applications.

10:30-10:55 Th3.2 (Invited)

Ultrasensitive DNA Detection by PNA-modified Photonic Crystal Fibers (PCFs),

Roberto Corradini¹

¹Department of Chemistry, Università di Parma, Parma (Italy) In this lecture we will describe the steps we have undertaken to achieve the goal of using PCF fibers as optofluidic genosensors. PCF containing Bragg grating, internally modified with peptide nucleic acid (PNA) probe, was found suitable for obtaining an optofluidic device for the detection of unamplified genomic DNA.

10:55-11:10 Th3.3

Characterization of SiON Microring Resonators for Biosensing Applications, T. Chalyan¹, D. Gandolfi¹, R. Guider¹, L. Pasquardini², A. Samusenko³, C. Pederzolli², G. Pucker³, L. Pavesi¹

¹Nanoscience Laboratory, Department of Physics, University of Trento, Trento (Italy), ²LaBSSAH, Fondazione Bruno Kessler, Povo (Italy), ³Centre for Materials and Microsystems, Fondazione Bruno Kessler, Povo (Italy)

We presented a study on microring-based photonic biosensors, for Aflatoxin M1detection. We measured the bulk Sensitivity (S) and Limit of Detection (LOD) as a function of the waveguide composition and dimensions. In addition, we performed sensing measurements on functionalized devices using Aflatoxin M1 solutions of various concentrations (down to ~10nM).

11:10-11:25 Th3.4

Optical Whispering Gallery Mode Microresonators for Biosensing,

Farnesi D.^{1,2}, Baldini F.², Barucci A.², Berneschi S.², Cosci A.^{1,2}, Cosi F.², Giannetti A.², NunziConti G.², Pelli S.^{1,2}, Righini G.C.^{1,2}, Soria S.², Tombelli S.², Trono C.²

¹Enrico Fermi Center, 00184 Roma (Italy), ²Institute of Applied Physics "Nello Carrara", CNR, Sesto Fiorentino (Italy)

Morphological dependence of optical Whispering Gallery Mode (WGM) microresonators can be well exploited in biosensing. Any variation in the resonator size or in the refractive index of the surrounding medium causes a shift of the resonance position. By measuring this shift, highly sensitive label-free biosensors can be developed.

11:25-11:40 Th3.5

Hybrid Silicon-PDMS Optofluidic Ring Resonator,

G. Testa¹, I.A. Grimaldi¹, G. Persichetti¹, R. Bernini¹

¹Istituto di Rilevamento Elettromagnetico dell'ambiente, CNR, Naples (Italy) Optofluidic approaches for ring resonators take advantages from the high sensitivity of the resonant photonic structure and simpler fluid handling characteristic due to fluidic integration. An integrated optofluidic ring resonator based on hybrid ARROW is presented.

11:40-11:55 Th3.6

Development of a Fluorescence-Based Optical Sensor for Nucleic Acid Detection,

Katia Tragni¹, Annamaria Cucinotta¹, Stefano Selleri¹, Alessandro Tonelli², Alessandro Candiani¹, Michele Sozzi¹

¹Dept. of Information Engineering, University of Parma, Parma (Italy), ²Dept. of Chemistry, University of Parma, Parma (Italy)

Afluorescence-based optical sensor for nucleic acid detection is demonstrated. It offers many advantages such as portability, low energy consumption, and rapid monitoring and it can detect viruses in small concentrations.

12:10-13:10 Poster Session I

13:10-14:00 Lunch

Parallel Sessions Th4: Integrated Optical Devices- Aula Magna

14:00-14:25 Th4.1 (Invited)

Red Blood Cell as Optfluidic Tuneable Lens,

<u>Francesco Merola¹</u>, Lisa Miccio¹, Pasquale Memmolo^{1,2}, Paolo Netti², Pietro Ferraro¹

¹CNR -Istituto "E. Caianiello", Pozzuoli-Naples (Italy), ²Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples (Italy)

For the first time a red blood cell is used as tunable microlens, driven by the solution osmolarity variation. Applications in diagnostics and microscopy are foreseen.

14:25-14:50 Th4.2 (Invited)

Fiber Based and Fiber Lasers Sources for Medical Applications,

Taccheo, S.¹

¹Swansea University, Swansea (UK)

This talk will present results and future research directions in the field of laser sources than will impact biomedical research in the coming years.

In particular the talk will focus on Fibre-Lasers based sources since their reliability and flexibility, exploring applications ranging from imaging, to cancer detection and customized implants. Particular emphasize will be give to the availability in the near future of new wavelength, particularly in the medium-infrared, for biomedical diagnostics and what could be expected to be available to biomedical researchers and clinicians aiming to use laser based tools for their activity.

14:50-15:05 Th4.3

Integrated III-V Semiconductor Platform with Capillary Fill Micro-Fluidics for Chip-Based Flow Cytometry,

R.Thomas¹, M.D.Holton², S.Gilgrass¹, A.Sobiesierski¹, P.M.Smowton¹, H.D.Summers², D. Barrow³

¹School of Physics and Astronomy, Cardiff University, The Parade, Cardiff (UK), ²Centre for Nanohealth, Swansea University, Singleton Park, Swansea (UK), ³Cardiff School of Engineering, Cardiff University, The Parade, Cardiff (UK)

We present a prototype of a III-V semiconductor platform with integrated laser/detectors and capillary fill micro-fluidics for flow cytometry in point-of-care and resource poor settings. Results of a micro-bead detection experiment demonstrate the arrayed lasers and detectors provide sub-µs time resolution with multiple interrogation events per cell.

15:05-15:20 Th4.4

A Parallel Microfluidic Device for Hydrodynamic Focusing of Acute Lymphoid Leukemia Cells,

S. Torino¹, M. Iodice¹, I. Rendina¹, G. Coppola¹, E. Schonbrun², D. Passaro¹ ¹Institute for Microelectronics and Microsystems, National Research Council, Naples (Italy), ²Rowland Institute at Harvard, Harvard University, Cambridge MA (USA)

15:20-15:35 Th4.5

Amorphous Silicon Photodiodes as a New Platform for Chemiluminescent Lateral Flow Immuneassay Quantitative Detection,

Mara Mirasoli¹, Giampiero De Cesare², Laura Anfossi³, Domenico Caputo², Augusto Nascetti⁴, M. Zangheri¹, Fabio Di Nardo³, Claudio Baggiani³, Aldo Roda¹

¹Department of Chemistry, Alma Mater Studiorum, University of Bologna, Bologna (Italy), ²Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Rome (Italy), ³Department of Chemistry, University of Turin, Turin (Italy), ⁴Department of Astronautics, Electrical and Energy Engineering, Sapienza University of Rome, Rome (Italy)

A simple, accurate, rapid and ultrasensitive biosensor based on Chemiluminescence Lateral Flow Immunoassay technology was developed for quantitative detection of human serum albumin in urine samples. To provide maximum detectability in a compact integrated device, an hydrogenated amorphous silicon photodiode array was employed for CL signal detection.

Th5: Modeling - Room 1

14:00-14:25 Th5.1 (Invited)

Cloud Monte Carlo Based Platform for the Needs of Biophotonics and Biomedical Optics,

Igor Meglinski^{1,2}, Steven Jacques³, Alexander Doronin¹

¹Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, Dunedin, (New Zealand), ²Laboratory of Opto-Electronics and Measurement Techniques, University of Oulu, Oulu (Finland), ³Departments of Biomedical Engineering and Dermatology, Oregon Health &

Science University, Portland, OR (USA)

Engineering design and optimization of optical diagnostic and imaging systems require a clear understanding of light-tissue interaction. We present the cloude Monte Carlo based platform for the needs of Biophotonics, including modeling of fluence rate distribution, skin reflectance spectra, Optical Coherence Tomography, tissue polarimetry, coherent back scattering, fluorescence and other.

14:25-14:50 Th5.2 (Invited)

New Methods for Acquiring the 3-D Structure and Contents of Live Cells without Labeling,

Natan T. Shaked¹ and Mor Habaza¹

¹Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv (Israel)

We propose new methods for noninvasive acquisition of the 3-D refractive-index structure of live cells in suspension without using any labelling. The methods are based on the acquisition of off-axis interferograms of the cell from different angles using external interferometric module, while fully rotating the cell using micro-manipulations.

14:50-15:05 Th5.3

An Eigenmode Expansion Method for Rigorous Simulations of Light Scattering From Living Cells,

Jirí Petráček^{1,2}, Yasa Eksioglu¹, Radim Chmelík^{1,2}

¹Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic), ²CEITEC - Central European Institute of Technology, Brno University of Technology, Technická 10, 616 00 Brno (Czech Republic)

We present a novel application of the eigenmode expansion technique for rigorous simulation of light scattering from living cells. The formulation uses numerically stable scattering matrices and a perturbation approach based on the rigorous coupled-mode theory. We demonstrate convergence properties and discuss practical applicability of the technique.

15:05-15:20 Th5.4

Photodynamic Therapy: Good News from Computational Approaches,

Nino Russo¹, Marta E. Alberto¹, Gloria Mazzone¹, Bruna C. De Simone¹, Tiziana Marino¹, Emilia Sicilia¹

¹Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Rende (Italy)

The possibility to design new photosensitizers active in photodynamic therapy (PDT) starting from computed electronic and geometrical properties (absorption wavelengths shifted in the Near Infrared Region, singlet-triplet energy gaps and spin-orbit matrix elements large enough to allow an efficient intersystem spin crossing) can be reliably predicted by Density Functional Theory.

15:20-15:35 Th5.5

Analysis of Light Transport Phenomena in Photosynthetic Microbial Cultures,

Hashem Asgharnejad¹, Mohammad-Hossein Sarrafzadeh¹, Reza Zarghami¹ ¹UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran (Iran)

In this paper a relation is made between light intensity and cell concentration in a photosynthetic microbial culture like photobioreactors. Present study is based on the diffusion of photons in a media and mathematical equations are derived through

Boltzmann equation and the diffusion analogy for light.

14:00-17:20 Exhibitor Showcase - Room 2

15:35-15:55 Coffee Break

Parallel Sessions Th6: Nano Biophotonics I- Aula Magna

16:00-16:25 Th6.1 (Invited)

Ultrapure Laser-Synthesized Nanomaterials for Biomedical Applications, Andrei V. Kabashin¹

¹Aix-Marseille University (AMU), LP3 UMR 7341 CNRS, Campus de Luminy, Case 917, 13288 Marseille (France)

This presentation overviews our results on laser-ablative synthesis of ultrapure nanomaterials for biomedical applications. Running experiments in vitro and in vivo, we conclude on "zero" toxicity of such nanomaterials. We then describe a novel method for cancer therapy, in which Si nanoparticles are used as sensitizers of RF-induced hyperthermia.

16:25-16:50 Th6.2 (Invited)

Plasmon and Plasmon-Like Nanophotonics for Biosensing,

Ivo Rendina¹

¹Institute of Microelectronics and Microsystems, Naples (Italy)

16:50-17:05 Th6.3

Nanophotonic Lab-On-A-Chip Raman Sensors: a Sensitivity Comparison with Confocal Raman Microscope,

Ashim Dhakal^{1,2}, Pieter Wuytens^{1,2,3}, Frederic Peyskens^{1,2}, Ananth Subramanian^{1,2}, Andre Skirtach^{2,3}, Nicolas Le Thomas^{1,2}, Roel Baets^{1,2} ¹Photonics Research Group, Department of Information Technology, Ghent University-IMEC, Ghent (Belgium), ²Center for Nano-and Biophotonics (NBphotonics), Ghent University, Ghent (Belgium), ³Department of Molecular biotechnology, Ghent University, B-9000 Ghent (Belgium)

We compare the performance of several nano-photonic waveguide based evanescent Raman sensors and the confocal microscope. While theoretically we expect more than 500 times higher signal for 1 cm long waveguides compared to the confocal systems, the results of our preliminary measurements indicate at least 25times higher measured.

17:05-17:20 Th6.4

Characterization of ZnSe/ZnS QD Conjugated with Antibody Labeling

Kisspeptins,

Anna Drobintseva¹, Victoria Polyakova¹, Lev Matyushkin², Yulia Krylova¹, Dmitry Masing², Olga Aleksandrova², Vyacheslav Moshnikov², Sergey Musikhin³, Igor Kvetnoy¹

¹Ott Institute of Obstetrics Gynecology and Reproductology, Saint Petersburg (Russia), ²Electrotechnical University, Saint-Petersburg ³Polytechnical University, Saint-Petersburg (Russia)

To our knowledge, this immunofluorescence assay applied ZnSe/ZnS combined with specific monoclonal antibody detecting kisspeptinsis presented for the first time. The application in real samples with favorable results and the highly sensitivity and selectivity further indicate that this QD's-mAb complex is feasible for kisspeptins detection.

Th7: Sensing and Plasmonic Platforms I- Room 1

16:00-16:25 Th7.1 (Invited)

Advanced Surface Plasmon Resonance Imaging Methods for Genomic DNA Detection,

Roberta D'Agata¹, Marzia Calcagno², Giulia Breveglieri³, Monica Borgatti³, Roberto Gambari³, <u>Giuseppe Spoto^{1,2}</u>

¹Department of Chemical Sciences, University of Catania, Catania (Italy), ²I.N.B.B. Consortium, Roma (Italy), ³Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara (Italy)

Nanoparticle-enhanced surface plasmon resonance imaging methods for PCR-free detection of genomic DNA will be presented. The role played by the proper functionalization of gold nanoparticles will be also discussed.

16:25-16:50 Th7.2 (Invited)

Molecular Switches for Sensing in Cells: Let's Light Up the 'Dark Matter' of the Genome,

<u>Ambra Giannetti¹</u>, Barbara Adinolfi¹, Sara Tombelli¹, Cosimo Trono¹, Francesco Baldini¹

¹CNR-IFAC, Sesto Fiorentino (FI) (Italy)

The delivery into cells of molecular switches, can conveniently allow the preparation of small tools to spy on cellular mechanisms with high specificity and sensitivity. The understanding, following, and monitoring of non-coding RNAs, a sort of "dark side" of the genome, could play a fundamental role for diagnosis and, even further, for therapy development.

16:50-17:05 Th7.3

Correlative TERS Imaging of B. Subtilis Spores,

Giulia Rusciano¹, Gianluigi Zito¹, Rachele Isticato², Teja Sirec², Ezio Ricca²,

Antonio Sasso¹

¹Department of Physics University of Naples Federico II, Naples (Italy), ²Department of Biology, University of Naples Federico II, Naples (Italy) We apply Tip-Enhanced Raman Scattering (TERS) for surface analysis of the Bacillus subtilis spore, a very attractive bio-system for a wide range of applications regulated by the spore surface properties. Our experimental outcomes reveal the arrangement of proteins and carbohydrates on specific spore surface regions, simultaneously revealed by AFM phase-imaging.

17:05-17:20 Th7.4

Versatile in Vivo Optogenetic Stimulation with Microstructured and Tapered Optical Fibers,

Ferruccio Pisanello¹, Leonardo Sileo¹, Ian A Oldenburg², Marco Pisanello^{1,3}, John A Assad^{4,5}, Bernardo L Sabatini² and Massimo De Vittorio^{1,3} ¹Istituto Italiano di Tecnologia-Center for Biomolecular Nanotechnologies, Arnesano, Lecce (Italy), ²Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA (USA), ³Dip. Ingegneria dell'Innovazione, Università del Salento, Lecce (Italy), ⁴Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Rovereto (Italy), ⁵Department of Neurobiology, Harvard Medical School, Boston, MA (USA)

We describe the fabrication and the in vivo implementation of a new and minimally invasive optogenetic device [F. Pisanello et al., Neuron 82, 1245 (2014)] that allows dynamic and selective stimulation of multiple brain regions through a single, thin and sharp micro machined fiber optic.

17:30-17:50 Transfer downtown Florence

18:15-19:15 City Tour (1h)

20:00-23:00 Social Dinner at restaurant "Lo Spaccio" Fattoria di Maiano

Friday 22nd May 2015

08:00-08:30 Registration

Plenary III- Aula Magna

08:30-08:55 Fr1.1 (Invited)

Applications of Laser Spectroscopy to Meet Challenges in Medicine, Katarina Svanberg^{1,2}

¹Department of Oncology, Lund University Hospital, Lund University, Lund (Sweden), ²South China Normal University, Guangzhou (China)

08:55-09:20 Fr1.2 (Invited)

Tissue Optical Clearing: New Prospects in Optical Imaging and Therapy, Valery Tuchin^{1,2,3}

¹Research-Educational Institute of Optics and Biophotonics, National SaratovState University, Saratov (Russia), ²Institute of Precise Mechanics and Control of Russian Academy of Sciences, Saratov (Russia), ³Optoelectronics and Measurement Techniques Laboratory, Department of Electrical Engineering, University of Oulu, Oulu (Finland)

Achievements of tissue optical clearing techniques are demonstrated. The specific features of optical clearing of tissues and blood are investigated using linear and nonlinear optical techniques in the visible, NIR and terahertz. In vitro, ex vivo, and in vivo studies of a variety of human and animal tissues are presented.

09:20-09:45 Fr1.3 (Invited)

Coherent Hemodynamics Spectroscopy for Quantitative Measurements of Cerebral Blood Flow and Autoregulation,

<u>Sergio Fantini</u>¹, Angelo Sassaroli¹, Jana M. Kainerstorfer¹, and Kristen T. Tgavalekos¹

¹Department of Biomedical Engineering, Tufts University, Medford, MA (USA) We present a novel technique, coherent hemodynamics spectroscopy (CHS), which is based on frequency-resolved measurements of coherent cerebral hemodynamic oscillations that are induced by controlled perturbations to the arterial blood pressure. The analysis of CHS spectra with a new hemodynamic model yields quantitative measurements of local cerebral blood flow and autoregulation.

09:45-10:05 Coffee Break

Parallel Sessions

Fr2: Spectroscopy and Imaging II - Aula Magna

10:05-10:30 Fr2.1 (Invited)

Human Microcirculation Imaging,

<u>Martin J. Leahy</u>¹, Roshan Dsouza¹, Seán O'Gorman¹, Aedán Breathnach¹, Haroon Zafar¹ and Hrebesh Subhash¹

¹Tissue Optics & Microcirculation Imaging Facility, School of Physics, National University of Ireland, Galway (Ireland) and National Biophotonics & Imaging Platform (Ireland)

10:30-10:55 Fr2.2 (Invited)

Biophotonics and Molecular Imaging: Looking at Biological Function and Disease From Cells to Whole Organisms,

Stylianos Psycharakis¹, Evangelos Liapis¹, Athanasios Zacharopoulos¹ and <u>Giannis Zacharakis¹</u>

¹Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion Crete (Greece)

Modern tools in biophotonics have revolutionized biological, preclinical and clinical research, providing new insights into the function of living organisms and disease. Technologies such as light-sheet microscopy, optical micro-tomography, optoacoustics and others can be used in label-free and targeted imaging from the single cell to the whole organism level.

10:55-11:10 Fr2.3

Mobile Platform for Online Processing of Multimodal Skinoptical Images,

Dmitrijs Bliznuks¹, Dainis Jakovels¹, Inga Saknite¹ and Janis Spigulis¹ ¹Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga (Latvia)

Mobile platform for multimodal skin assessment has been developed combining diffuse reflectance, fluorescence spectral imaging and laser speckle imaging. It consist of handheld, battery powered image acquisition module that can be wirelessly connected to mobile phone or laptop and transfer data to online storage place for further processing.

11:10-11:25 Fr2.4

Importance of Image Processing in Digital Optical Capillaroscopy for Early Diagnostics of Arterial Hypertension,

Gurfinkel Yu.I.¹, Priezzhev A.V.², Kuznetzov M.I.¹

¹Research Clinical Center of JSC "Russian Railways", Moscow (Russia), ²Physics Department and International Laser Center of Lomonosov Moscow State University, Moscow (Russia)

Nailfold capillaries were visualized in hypertensive and prehypertensive patients using digital optical capillaroscopy with a high speed CCD-camera. Image processing included stabilization, capillary contouring and determining the capillary blood velocity. It allowed

for recognizing the remodeling and rarefaction of capillaries that are important for early diagnostics of arterial hypertension.

11:25-11:40 Fr2.5

Benign –Atypical Nevi Discrimination Using Diffuse Reflectance and Fluorescence Multispectral Imaging System,

Dainis Jakovels¹, Inga Saknite¹, Dmitrijs Bliznuks¹, Janis Spigulis¹ ¹BiophotonicsLaboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga (Latvia)

The multispectral imaging system Nuance operating in spectral range 450-950 nm was adapted for diffuse reflectance and fluorescence clinical in vivo measurements of pigmented skin lesions. Pilot study was performed on 75 volunteers to test discrimination possibility between benign and atypical nevi

11:40-11:55 Fr2.6

Development of a Time-Resolved Diffuse Optical Tomography System Based on a Single Pixel Camera,

Andrea Farina¹, Marta Betcke², Laura Di Sieno³, Alberto Dalla Mora³, Nicolas Ducros⁴, Gianluca Valentini^{1,3}, Antonio Pifferi^{1,3}, Simon Arridge², Cosimo D'Andrea^{3,5}

¹Consiglio Nazionale delle Ricerche, IFN, Milan (Italy), ²Centre for Medical Image Computing, University College London London (UK), ³Politecnico di Milano, Dipartimento di Fisica Milan (Italy), ⁴CREATIS, CNRS UMR5220, INSERM U1044, Universitéde Lyon, INSA Lyon, Villeurbanne (France), ⁵Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan (Italy)

Diffuse Optical Tomography (DOT) and Fluorescence Molecular Tomography (FMT)are 3D imaging techniques to quantitatively measure tissue optical parameters. In this work a time-resolved DOT/FMT system based on compressive sensing approach which allows to significantly reduce the data set while preserving the spatial and temporal capability, is presented.

Fr3: Microscopy - Room 2

10:05-10:30 Fr3.1 (Invited)

In Situ Quantitation of Collagen Fibrils Size *Via* Absolute Measurements of SHG Signals,

S. Bancelin¹, C. Aimé², I. Gusachenko¹, L. Kowalczuk³, G. Latour¹, T. Coradin² and <u>M.-C. Schanne-Klein¹</u>

¹École Polytechnique, CNRS, INSERM U696, Laboratoire d'Optique et Biosciences, Palaiseau (France), ²Sorbonne Universités, UPMC Univ Paris 06,

CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Collège de France, Paris (France), ³Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris (France). We correlated SHG and Electron Microscopies to calibrate SHG signals as a function of collagen fibril diameter, down to 30 nm. We observed a fourth power variation, in agreement with analytical and numerical calculations. We applied this calibration to abnormal fibrils in the Descemet's membrane of fresh rat corneas.

10:30-10:55 Fr3.2 (Invited)

Optical Brain Imaging,

<u>Allegra Mascaro, L.¹</u>

¹Lens-University of Florence, Florence (Italy)

10:55-11:10 Fr3.3

Lens-Less Microscopy Combined with Capillary Force Assembly for Systematic Particle Detection,

Olivier Lecarme^{1,2}, Anthony Léonard^{1,2}, Julien Cordeiro^{1,2}, Emmanuel Picard³, David Peyrade^{1,2}

¹Univ. Grenoble Alpes, F-38000 Grenoble (France), ²CEA, LETI, LTM-CNRS, MINATEC Campus, F-38000 Grenoble (France), ³CEA, INAC-SP2M, SiNaPS, MINATEC Campus, F-38000 Grenoble (France)

We show a method coupling capillary force assembly of colloidal objects and consumer camera based lens-less microscopy for simple and fast detection of micro-particles. As proof-of-concept for micro-biodetection, we demonstrate the assembly of ~70000 microbeads in a single particle array and their simultaneous imaging using an ultra-wide field-of-view lens-less microscope.

11:10-11:25 Fr3.4

Spectral Detection of Accumulation of a Ph-Activatable Fluorescent Probe in Dendritic Cells,

Zoran Arsov^{1,2}, Urban Švajger³, Janez Mravljak⁴, Stane Pajk⁴, Iztok Urbančič¹, Janez Štrancar^{1,2}, Marko Anderluh⁴

¹Laboratory of Biophysics, Department of Solid State Physics, Jozef Stefan Institute, Ljubljana (Slovenia), ²Center of Excellence NAMASTE, Ljubljana (Slovenia), ³Blood Transfusion Centre of Slovenia, Ljubljana (Slovenia), ⁴Department of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana (Slovenia)

Internalization by antigen-presenting dendritic cells (DCs) was studied with a pH-sensitive probe. The probe exhibits activation at low pH and an aggregation-induced spectral shift. The latter is small, so only a highly spectrally sensitive fluorescence microspectroscopy (FMS) enabled detection of the probe accumulation in low-pH compartments of DCs

11:25-11:40 Fr3.5

Fluorescence Microspectroscopy Insight into Membrane Disintegration Driven by Titanium Dioxide Nanoparticles,

Maja Garvas^{1,2}, Iztok Urbančič¹, Anže Testen¹, Polona Umek^{1,3}, Miha Škarabot¹, Zoran Arsov^{1,3}, Tilen Koklič^{1,3}, Igor Muševič^{1,4}, Janez Štrancar^{1,2} ¹J. Stefan Institute, Jamova cesta 39, Ljubljana (Slovenia), ²Jozef Stefan International postgraduate school, Jamova cesta 39, Ljubljana (Slovenia), ³Center of excellence NAMASTE, Jamova cesta 39, Ljubljana (Slovenia), ⁴Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana (Slovenia)

By using fluorescence microspectroscopy and Foerster resonance energy transfer we identify the accumulation of TiO_2 nanoparticles on the membranes. Aggregates of the TiO_2 nanoparticles become wrapped by the membrane lipids and diffuse away, resulting in a lipid outflow that critically destabilizes the lipid bilayer.

12:00-13:00 Poster Session II

13:00-14:00 Lunch

Parallel Sessions

Fr4: Sensing and Plasmonic Platforms II - Aula Magna

14:00-14:25 Fr4.1 (Invited)

Surface Plasmon Resonance Biosensors to Detect Autoantibodies in Human Plasma – Potentials for Diagnostic Applications,

Peter B. Luppa¹,

¹Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar der TU München (Germany)

14:25-14:50 Fr4.2 (Invited)

Opportunities with Light-Responsive Plasmonic Nanomaterials and Graphene in Therapy and Sensing,

<u>Paolo Matteini</u>¹, Fulvio Ratto¹, Francesca Rossi¹, Marella de Angelis¹, Martina Banchelli¹, Lucia Cavigli¹, Sonia Centi¹, Francesca Tatini¹ and Roberto Pini¹ ¹Institute of Applied Physics "Nello Carrara", National Research Council, via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

Plasmonic nanoparticles and graphene can be used for generating photothermal effects and for enhancing the local electric field, which in turn are being exploited for a variety of biomedical applications. We present some light-activated materials we have recently

engineered as viable solutions to critical issues in therapy and sensing.

14:50-15:05 Fr4.3

Towards Personalized Snps Screening by SPR Biosensing: Recent Strategies and Achievements,

S. Scarano¹, S. Mariani¹, M.L. Ermini¹, R. Barale², M. Bonini^{1,3}, and M. Minunni^{1,3}

¹Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino (Italy), ²Department of Biology, University of Pisa, Pisa (Italy), ³CSGI Consortium, Sesto Fiorentino (Italy)

15:05-15:20 Fr4.4

"Lab-on-Fiber Technology" for the Real Time Cancer Marker Detection: Developing an Innovative Local SPR Based Optical Fiber Biosensor,

Renato Severino¹, Armando Ricciardi¹, Giuseppe Quero¹, Benito Carotenuto¹, Marco Consales¹, Alessio Crescitelli², Emanuela Esposito², Menotti Ruvo³, Annamaria Sandomenico³, Anna Borriello⁴, Lucia Sansone⁴, Antonello Cutolo¹, Andrea Cusano¹

¹Optoelectronic Division, Dept. of Engineering, University of Sannio, Benevento (Italy), ²Istituto per la Microelettronica e Microsistemi, National Research Council, Naples (Italy), ³Istituto di Biostrutture e Bioimmagini, National Research Council, Naples (Italy), ⁴Istituto per i Polimeri Compositi e Biomateriali, National Research Council, Naples (Italy)

The work deals with an innovative Lab-on-Fiber biosensor developed for the real time detection of thyroid carcinomas biomarkers. Thanks to the presence of a metallic nanostructure supporting LSPR on the fiber tip, the device is able to detect nanomolar.

15:20-15:35 Fr4.5

Voltage Sensitivity of Surface Plasmon Resonance for Biological Applications,

Sidahmed Abayzeed¹, Richard Smith¹, Kevin Webb¹, Michael Somekh² and Chung See¹

¹Applied Optics Group, University of Nottingham, Nottingham (UK), ²Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

Fr5: Diagnostics and Therapeutics Applications III - Room 2

14:00-14:25 Fr 5.1 (Invited)

Functional Optical Coherence Tomography on Human Skin with Cellular

Resolution,

Tuan-ShuHo¹, Jeng-Wei Tjiu², Meng-Ting Chien¹, Dong-Yi Wu¹, Chia-Kai Chang¹, Pinghui S. Yeh³, Yu-I Li⁴, Chia-Tung Shun⁴, <u>Sheng-Lung Huang¹</u> ¹Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei (Taiwan), ²Department of Dermatology, National Taiwan University Hospital, Taipei (Taiwan), ³Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei (Taiwan), ⁴Department and Graduate Institute of Forensic Medicine, National Taiwan University, Taipei (Taiwan)

Imaging of cells and tissues with sub-micron resolution using optical coherence tomography could help unveil functions of living organisms and facilitate clinical disease/cancer diagnosis in the early stage. The vector flowing of blood cells in micro vessels were traced. Both morphological recognition and parametric analysis will be discussed.

14:25-14:50 Fr 5.2 (Invited)

Dynamic Imaging of Human Eye Accommodation with Optical Coherence Tomography,

<u>Marco Ruggeri</u>¹, Victor Hernandez^{1,2}, Siobhan Williams^{1,2}, Carolina de Freitas¹, Florence Cabot¹, Nilufer Yesilirmak¹, Fabrice Manns^{1,2} and Jean-Marie Parel^{1,2}, ¹Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL (USA), ²Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL (USA)

We developed optical coherence tomography technologies enabling real time in vivo imaging and biometry of the human accommodation optics and mechanics. The instrumentation is used to study the changes leading to presbyopia and to accelerate the development of innovative procedures aimed at restoring accommodation in presbyopes and cataract surgery patients.

14:50-15:05 Fr5.3

Antimicrobial Effect on *Candida Albicans* by Different Coupling of Wavelengths and Colors in Photodynamic Therapy Protocols,

Elisabetta Merigo¹, Stefania Conti², Tecla Ciociola², Carlo Fornaini¹, Luciano Polonelli², Giuseppe Lagori¹, Maddalena Manfredi¹, Paolo Vescovi¹ ¹Department of Biomedical, Biotechnological and Translational Sciences

(S.Bi.Bi.T), University of Parma, Parma (Italy)

15:05-15:20 Fr5.4

Light-Emitting Capsule for Intra-Gastric Photodynamic Therapy,

Giovanni Romano¹, Federico Cubeddu², Barbara Orsini¹, Giuseppe Tortora², Monica Monici³, Elisabetta Surrenti⁴, Calogero Surrenti¹, Arianna Menciassi¹, Franco Fusi¹

¹Dept. of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence (Italy), ²The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa (Italy), ³ASA Campus Joint Laboratory, ASA Research Division, Dept. of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence (Italy), ⁴ASL 10, Florence (Italy)

Helicobacter Pylori is a bacterium colonizing the stomach antrum, causing several gastric pathologies and being treated with pharmacological therapies. We propose the characterization of an innovative therapeutic device –an ingestible luminous capsule –to eradicate Helicobacter Pylori infection by means of photodynamic therapyin a minimally invasive way.

15:20-15:35 Fr 5.5

Micro-Raman Spectroscopy during Orthodontic Tooth Movement: Follow-Up of Gingival Status,

C. Camerlingo¹, F. d'Apuzzo², V. Grassia², G. Parente², L. Perillo², M. Lepore³ ¹SPIN-CNR, Istituto Superconduttori, Materiali innovativi e Dispositivi, Pozzuoli (Italy), ²Dip. Multidisciplinare di Specialità Medico-Chirurgiche e Odontoiatriche, Seconda Università di Naples, Naples (Italy), ³Dip. di Medicina Sperimentale, Seconda Università di Naples, Naples (Italy) The potentiality of Micro-Raman spectroscopy to evaluate GCF composition changes generated in the periodontium by orthodontic forces was assessed. A suitable numerical treatment based on wavelet algorithms has been used for spectral data. The preliminary results showed an increase of carotene in GCF during the orthodontic tooth movement.

15:35-15:55 Coffee Break

Parallel Sessions Fr6: Food - Aula Magna

16:00-16:25 Fr6.1 (Invited)

Smart Sensors for Food Safety: Opportunities and Challenges, <u>Chiara Dall'Asta¹</u>

¹Department of Food Science, University of Parma, Parma (Italy) Food safety is mainly aimed at the prevention of food-related outbreaks. Although, instrumental protocols are still gold standards, there is a need for complementary techniques in the field of rapid screening. This communication focuses on the major advantages and challenges associated with the use of optical sensors in food safety.

16:25-16:40 Fr6.2

Si-based Monolithic Poylchromatic Young Interferometeras an Enabling

Tool for Point-of-Need Food Safety Determinations,

Konstantinos Misiakos¹, Panagiota Petrou², Sotirios Kakabakos², Alexandros Salapatas¹, Athanasios Botsialas³, Ioannis Raptis³, Iliani Kylintirea⁴, Triantafyllos Sarafidis⁴, Antonis Lambidonis⁵, Anastasios Varouxis⁶, Eleni Makarona¹

¹Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens (Greece), ²Institute of Nuclear and Radiological Sciences & Energy, Safety and Environment, NCSR "Demokritos", Athens (Greece), ³ThetaMetrisis S.A., Egaleo; ⁴H+S Technology Solutions S.A., Elliniko (Greece), ⁵Food Allergens Laboratory, Rethymno (Greece), ⁶Provirom Ltd, Elefsina (Greece) We present an optoelectronic platform designed for the multi-analyte, label-free, real-time detection of pesticides in drinking water and agricultural products. The platform, exploiting broad-band Young interferometry, specially-designed immunosensing/functionalization strategies and a compact and user-friendly reader is

currently used for the determination of pesticide residues in drinking water samples. 16:40.16:55 Fr6.3

Nondestructive Assessment of Apple Optical Properties during Growth by Time-Resolved Reflectance Spectroscopy in The Orchard,

Alessandro Torricelli¹, Dominique Fleury², Jeanne Giesser², Reynald Pasche², Jana Kaethner³, Manuela Zude³, Lorenzo Spinelli⁴

¹Dipartimento di Fisica, Politecnico di Milano, Milan (Italy), ²Hes so, Changins, Nyon (Switzerland), ³Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Potsdam (Germany), ⁴Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale per le Ricerche, Milan (Italy)

We report on the first application of time-resolved reflectance spectroscopy in the orchards for the nondestructive assessment of apple optical properties during growth. A portable dual-wavelength (650 nm, 780 nm) system was developed and used to assess the absorption coefficient and the reduced scattering coefficient of apples during growth.

16:55-17:10 Fr6.4

Multilayer Integrated Structure for Selective Detection of Ochratoxin A,

D. Caputo¹, E. Parisi¹, M. Carpentiero¹, F. Pavanello², M. Tucci³, A. Nascetti⁴, G. de Cesare¹

¹DIET University of Rome "La Sapienza" Rome (Italy), ²AUTOMATION s.r.l. Abbiategrasso, Milan (Italy), ³ENEA, Research Center Casaccia, Rome (Italy), ⁴DIAEE University of Rome "La Sapienza" Rome (Italy)

This work presents, for the first time, the integration on the same glass substrate of amorphous silicon photosensors and of a long pass thin film filter, in order to achieve a more compact and efficient system to detect Ochratoxin A, a highly toxic mycotoxin present in widespread food commodities.

17:10-17:25 Fr6.5

Non-Destructive Fluorescence Sensing for Applications in Precision Viticulture,

Lorenza Tuccio¹, Graziana Grassini², Giovanni Agati¹ ¹Istituto di Fisica Applicata "Nello Carrara" – Consiglio Nazionale delle Ricerche, Sesto Fiorentino (Italy), ²Centro Analisi C.A.I.M., Via del Turismo 196, 58022 Follonica (Italy)

A portable fluorescence sensor was used to assess in a sustainable, rapid and nondestructive way target molecules in winegrape (Vitis vinifera L.) which markedly change during fruit maturity and plant stress conditions. These information provided in situ are useful in precision viticulture to support producer decisions and improve the wine quality.

Fr7: Nano Biophotonics II - Room 2

16:00-16:25 Fr7.1 (Invited)

Magnetite Nanoparticles for Optical Diagnostics and Laser Regeneration of Cartilage,

Emil Sobol¹, Alexander Omelchenko¹, YuliaSoshnikova¹,

¹Institute on Laser & Information Technologies, Russian Academy of Sciences, Troitsk (Russia)

16:25-16:40 Fr7.2

Plasmon-Resonant Nanostars with Variable Sizes as Contrast Agents for Optical Coherence Tomography and Confocal Microscopy,

Olga Bibikova^{1,2}, Andrew Fales³, Hsiangkuo Yuan³, Alexey Popov^{1,2}, Alexander Bykov^{1,2}, Matti Kinnunen¹, Vladimir Bogatyrev^{4,5}, Krisztian Kordas⁶, Tuan Vo-Dinh³, Valery Tuchin^{1,2,7}

¹Optoelectronics and Measurement Techniques Laboratory, Department of Electrical Engineering, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu (Finland), ²Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov (Russia), ³Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC (USA), ⁴Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov (Russia), ⁵Department of Biophysics, Faculty of Nonlinear Processes, Saratov State University, Saratov (Russia), ⁶Microelectronics and Materials Physics Laboratories, Department of Electrical Engineering, Faculty of Information Technology and Electrical Engineering, University of Oulu,

Oulu (Finland), ⁷Institute of Precise Mechanics and Control, Russian Academy of Sciences, Saratov (Russia)

Gold nanostars with variable sizes were synthesized and optically characterized by a spectrophotometer system with integrating spheres. The high scattering contribution enables usage of nanostars as contrast agents in optical coherence tomography for bioimaging and in laser confocal microscopy for real-time observation of NSts localisation inside living cells.

16:40.16:55 Fr7.3

Diatomite Nanoparticles as Potential Drug Delivery Systems,

M. Terracciano^{1,4}, A. Lamberti², H.A.Santos³, N.M.Martucci², M.A.Shahbazi³, A.Correira³I.Ruggiero², I. Rendina¹, L. De Stefano¹, I.Rea¹

Institute for Microelectronics and Microsystems, National Research Council, Naples (Italy), ²Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (Italy), ³Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki (Finland), ⁴Department of Pharmacy, University of Naples Federico II, Naples (Italy)

The physical and chemical properties of diatomite, the relatively low cost and abundance in nature have attracted a large variety of industrial applications such as food production, water extracting agent, production of cosmetic and pharmaceutics; in particular, the chemical inertness, thermal stability, high surface area, non-toxicity and biocompatibility make diatomite ideal material for the preparation of drug delivery nanocarriers.

16:55-17:10 Fr7.4

Raman Imaging for the Intracellular Label-Free detection and study of Drug Nanocarriers and Graphene nanoparticles,

Renzo Vanna¹, Federica Valentini², Carlo Morasso¹, Aldrei Boaretto^{2,3}, Laura Pandolfi⁴, Paolo Verderio⁴, Silvia Picciolini¹, Alice Gualerzi¹, Marzia Bedoni¹, Davide Prosperi⁴, Furio Gramatica¹

¹Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Fondazione Don Carlo Gnocchi ONLUS, Milan (Italy), ²Dipartimento di Scienze e Tecnologie Chimiche, Rome (Italy), ³CAPES Foundation, Ministry of Education of Brazil Brasilia (Brazil), ⁴Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan (Italy)

Nanoparticles are emerging as a new platform for cancer therapy, but their intracellular characterization is mostly based on fluorescent labelling. Here we show how the use of Raman spectroscopy permits the label-free localization and the chemical characterization of drug-loaded nanoparticles and graphene nanoparticles at intracellular level.

17:10-17:25 Fr7.5

Strategies for Gold Nanorods Targeting of Tumors for Optical

Hyperthermia,

Sonia Centi¹, Fulvio Ratto¹, Francesca Tatini¹, Ida Landini², Stefania Nobili², Ewa Witort³, Giovanni Romano³, Franco Fusi³, Sergio Capaccioli³, Enrico Mini³, Roberto Pini¹

¹Institute of Applied Physics, National Research Council of Italy, Sesto F.no (Italy), ²Department of Health Science, University of Florence, Florence (Italy), ³Department of Experimental Biomedical and Clinical Science, University of Florence, Florence (Italy)

Gold nanorods (GNRs) are optimal contrast agents for photoacustic imaging and photothermal ablation of cancer. Selective targeting of cancer cells with these contrast agents may rely on complementary biochemical and biological strategies, including the use of specific probes or the exploitation of cellular vehicles. Different approaches for active delivery are reported.

Poster Session I

Thursday 21st May 2015, 12:10-13:10

P1.1. Skin Neoplasm Diagnostics Using Combined Spectral Method in Visible and Near Infrared Regions

Valery Zakharov¹, Ivan Bratchenko¹, Dmitry Artemyev¹, Oleg Myakinin¹, Yulia Khristoforova¹, Maria Vrakova¹

¹Samara State Aerospace University, Samara (Russia)

P1.2. Delivering a Photosensitizer to The Right Place - What Matters Ludmil Benov^{1,}

¹Department of Biochemistry, Faculty of Medicine, Kuwait University, (Kuwait)

P1.3. Photophysical Properties of Free and Metallated Meso-Substituted Tetrabenzotriazaporphyrin and Isoindole-Boron Dipyrromethene Derivatives from Density Functional Theoretical Investigation

Bruna C. De Simone¹, Marta E. Alberto¹, Gloria Mazzone¹, Tiziana Marino¹, Nino Russo¹ ¹Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende (Italy)

P1.4. Optical Spectroscopy in Photodynamic Therapy for Superficial Skin Malignancies and Actinic Keratosis

E. Drakaki¹, I. Stefanaki², C. Dessinioti², I.A. Sianoudis³, M. Makropoulou¹, A.A. Serafetinides¹, E. Christofidou², A.J. Stratigos², A.D. Katsambas², Ch. Antoniou² ¹National Technical University of Athens, Dept of Physics, Athens (Greece), ²University of Athens, Dept of Dermatology, Hospital A. Syggros, Athens (Greece), ³Technological Educational Institute (TEI) of Athens, Dept of Optics & Optometry, Athens (Greece)

P1.5. Er:YAG Laser in Orthodontic Brackets Bonding: "ex vivo" Study Carlo Fornaini^{1,2}, Michele Sozzi¹, Jean-Paul Rocca², Stefano Selleri¹ and Anna Cucinotta¹ ¹Information Engineering Department, University of Parma, Parma (Italy), ²Restorative Dentistry and Endodontics Department, Faculty of Dentistry, University of Nice-Sophia Antipolis, Nice (France)

P1.6. Laser and light on Dental Composite Polymerization Comparison: "In Vitro" Study

Carlo Fornaini^{1,2}, Giuseppe Lagori¹, Michele Sozzi², Elisabetta Merigo¹, Stefano Selleri² And Annamaria Cucinotta²

¹Oral Medicine and Laser-assisted Surgery Unit, University of Parma, Parma (Italy), ²Information Engineering Department, University of Parma, Parma (Italy)

P1.7. Performing of the Polarimetric Imaging Diagnosis of Ex-vivo Uterine Cervical Cancer

Huda Haddad¹

¹Laboratoire de Physique des Interfaces et des Couches Minces, CNRS Ecole polytechnique 91128 Palaiseau (France)

P1.8. Necrosis as a Consequence of PKCα Silencing after Hypericin Photoactivation in U87-MG Cells

Zuzana Nadova¹, Jaroslava Joniova¹, Matus Misuth¹, Michaela Ferencakova¹, Franck Sureau³ and Pavol Miskovsky^{1,2}

¹Dept. of Biophysics, P.J. Safarik University, Kosice (Slovakia), ²Center for Interdisciplinary Biosciences P.J. Safarik University, Kosice, (Slovakia), ³CNRS / UPMC Univ Paris 06, Laboratoire Jean Perrin LJP, Paris (France)

P1.9. Cell Viability in the Endothelium of Porcine Cornea exposed to Ultrashort Laser Pulses

Syed Asad Hussain¹, Fatima Alahyane¹, Caroline Crotti¹, Zacaria Essaïdi¹, Laura Kowalczuk¹, Marie-Claire Schanne-Klein², Karsten Plamann¹

¹Laboratoire d'optique appliquée, ENSTA ParisTech - École polytechnique - CNRS Palaiseau (France), ²Laboratoire d'optique et biosciences, École polytechnique – CNRS Palaiseau (France)

P1.10. Investigation of Deep Stroma by Confocal Microscopy

F. Rossi¹, F. Tatini¹, A. Canovetti², A. Malandrini², I. Lenzetti², L. Menabuoni², P. Valente³, L. Buzzonetti³, R. Pini¹

¹Institute of Applied Physics IFAC-CNR, Florence (Italy), ²Nuovo Ospedale Santo Stefano, Prato (Italy), ³Bambino Gesù IRCCS Children's Hospital, Fiumicino (Italy)

P1.11. Effects of Probe Placement on Tissue Oxygenation Levels During Reflectance Measurements for Different Types of Tissues in a Clinical Setting Suresh Anand¹ and Sujatha Narayanan Unni¹

¹Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai (India)

P1.12. Random Access Microscopy to Unravel the Spatio-Temporal Relationship Between T-Tubular Electrical Activity and Ca2+ Release in Heart Failure

C. Crocini¹, R. Coppini², C. Ferrantini², P. Yan³, L. Loew³, C. Tesi², C. Poggesi², E. Cerbai², F.S. Pavone^{1,4,5}, L. Sacconi^{1,5}

¹European Laboratory for Non-Linear Spectroscopy (LENS), Florence (Italy), ²University of Florence, Interuniversity Center of Molecular Medicine and Applied Biophysics CIMMBA, Florence (Italy), ³R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Connecticut (USA), ⁴Department of Physics and Astronomy, University of Florence, Sesto Fiorentino (Italy), ⁵National Institute of Optics INO-CNR, Florence (Italy)

P1.13. TDE: a New Versatile Clearing Agent for Multi Modal Brain Imaging

Irene Costantini¹, Antonino Paolo Di Giovanna¹, Anna Letizia Allegra Mascaro¹, Ludovico Silvestri¹, Marie Caroline Müllenbroich¹, Leonardo Sacconi^{1,2}, Francesco Saverio Pavone^{1,2,3}

¹European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino (Italy), ²National Institute of Optics INO-CNR, Florence (Italy), ³Department of Physics and Astronomy, University of Florence, Sesto Fiorentino (Italy)

- **P1.14.** Combined Multiphoton and Optical Coherence Microscopy Dominik Marti¹, Mathias Christensen¹, Peter E. Andersen¹ ¹Technical University of Denmark, Roskilde (Denmark)
- **P1.15.** Optical Methods for Research of Teeth Dentin with Chronic Fibrous Pulpitis Elena Timchenko¹, Pavel Timchenko¹, Larisa Zherdeva (Taskina)¹, Larisa Volova¹ ¹Samara State Aerospace University (SSAU), Samara (Russia)
- P1.16. Optical Methods of Collagen and Hydroxyapatite Change Monitoring in the Process of Bone Tissue Demineralization

Elena Timchenko¹, Pavel Timchenko¹, Larisa Zherdeva (Taskina)¹, Larisa Volova¹, Julia Ponomareva¹

¹Samara State Aerospace University (SSAU), Samara (Russia)

P1.17. Optical Methods of Hydrogen Degassing Monitoring in the City Areas E.V. Timchenko¹, P.E. Timchenko¹, L.A. Taskina¹, N.V. Tregub¹, E.A. Seleznyeva¹, V.N. Yakovlev¹

¹Samara State Aerospace University (SSAU), Samara (Russia)

P1.18. Optical Methods of Aquatic Plants Under the Influence of Pollutants Monitoring

E.V. Timchenko¹, P.E. Timchenko¹, L.A. Taskina¹, N.V. Tregub¹, A.A. Asadova¹ ¹Samara State Aerospace University (SSAU), Samara (Russia)

P1.19. FLIM-FRET Analysis Using Ca2+ Sensors in HeLa Cells

Ilaria Fortunati¹, Camilla Ferrante¹, Renato Bozio¹, Elisa Greotti^{2,3}, Tullio Pozzan^{2,3,4} ¹Chemical Science Dept., University of Padova and INSTM, Padova (Italy), ²Biomedical Sciences Dept., University of Padova, Padova (Italy), ³Italian National Research Council (CNR), Padova (Italy), ⁴Venetian Institute of Molecular Medicine, Padova (Italy)

P1.20. BSA Adsorption on Gold Nanoparticles Investigated under Static and Flow Conditions

Camilla Ferrante¹, Ilaria Fortunati¹, Verena Weber¹ ¹Dept. di Scienze Chimiche, Università di Padova, Padova (Italy)

P1.21. Physiology-First Development for Resonant Reflection Spectroscopy of Skeletal Muscle Sarcomeres

Kevin W. Young^{1,2}, Stojan Radic¹, Evgeny Myslivets¹, Shawn M. O'Connor¹, Richard L. Lieber^{1,2,3}

¹University of California San Diego, La Jolla, CA (USA), ²VA San Diego Healthcare System, San Diego, CA (USA), ³Rehabilitation Institute of Chicago, Chicago, IL (USA)

- P1.22. Sensing Platform for The Detection of Tumor Markers Praskoviya Boltovets¹, Ganna Geraschenko², Ludmila Strokovska², Maya Bobrovska², Sergiy Kravchenko¹, Boris Snopok¹, Vladimir Kashuba² ¹Institute of Semiconductor Physics NAS of Ukraine (Kyiv), ²Institute of Molecular Biology and Genetics NAS of Ukraine (Kyiv)
- P1.23. New Generation Superconducting Optical Converter with Single Photon Resolution in Near and Mid IR Range

M.A. Tarkhov¹, B.A. Gurovich¹, K.E. Prikhodko¹, E.A. Kuleshova¹, V.L. Stolyarov¹, E.D. Olshansky¹, B.V. Goncharov¹, D.A. Goncharova¹, A.G. Domantovsky¹, L.V.Kutuzov¹, P.P.An¹

¹National Research Centre "Kurchatov Institute", Moscow (Russia)

P1.24. Detection of Viral DNA by Isothermal NASBA Amplification and Chemiluminescence Gene Probe Hybridization Assay in a Microfluidic Cartridge with Integrated Array of Amorphous Silicon Photosensors

Mara Mirasoli¹, Francesca Bonvicini², Augusto Nascetti³, Giampiero De Cesare⁴, Martina Zangheri¹, Domenico Caputo⁴, Giorgio Gallinella², Aldo Roda¹

¹Department of Chemistry, Alma Mater Studiorum, University of Bologna, Bologna (Italy), ²Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna (Italy), ³Department of Astronautics, Electrical and Energy Engineering, Sapienza University of Rome, Rome (Italy), ⁴Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Rome (Italy)

P1.25. Transmission and Reflection SPR Disposable Fibre Probes for Bio-chemical Sensing

Papiya Dhara^{1,2}, Massimo Olivero¹, Alberto Vallan¹, Guido Perrone¹ ¹Politecnico di Torino - Dept. of Electronics and Telecommunications, Torino (Italy), ²Dept. of Applied Physics, Indian School of Mines, Dhanbad (India)

P1.26. Mobile Laser Radar Platform for Environmental Monitoring

Guangyu Zhao¹, Ming Lian¹, Zheng Duan¹, Yiyun Li¹, Zhiming Zhu¹, Liang Mei¹, and Sune Svanberg^{1,2}

¹COER, South China Normal University, Guangzhou (China), ²Lund Laser Centre, Lund University (Sweden)

P1.27. Optical Birefringence Sensor for Fluidic Concentration Measurements Ruey-Ching Twu¹, Guan-Min Chen¹

¹Department of Electro-Optical Engineering, Southern Taiwan University of Science and Technology, Tainan (Taiwan)

P1.28. Inducing Cells Rotation in a Microfluidic Device by Hydrodynamic Forces

S. Torino¹, M. Iodice¹, I. Rendina¹, G. Coppola¹, E. Schonbrun² ¹Institute for Microelectronics and Microsystems, National Research Council, Naples (Italy), ²Rowland Institute at Harvard, Harvard University, Cambridge MA (USA)

P1.29. Micro Rings – a New Way of Optical Sensing,
M. Kleinert, C. Zawadzki, N. Keil, W. Schlaak¹
¹Fraunhofer Heinrich-Hertz-Institute HHI, Berlin (Germany)

P1.30. Nanodome Coins for Intracellular Surface-Enhanced Raman Spectroscopy Pieter Wuytens^{1,2,3}, Winnok De Vosb⁴, Andre Skirtach^{2,3}, Roel Baetsa³, ¹Photonics Research Group, Ghent University-imec, Ghent (Belgium), ²Department of Molecular Biotechnology, Ghent University (Belgium), ³Center for Nano- and Biophotonics, Ghent University (Belgium), ⁴Dept. Veterinary Sciences, University of Antwerp, Antwerp (Belgium)

Poster Session II

Friday 22nd May 2015, 12:00-13:00

P2.1. In Situ Assessment of Quality-Related Compounds in Fruits by Using Fluorescence Sensors

Elisa Fierini¹, Lisa Banelli¹, Damiano Remorini², Patrizia Pinelli¹, Annalisa Romani¹, Giovanni Agati³

¹Dipartimento di Statistica, Informatica, Applicazioni-DiSIA, Università di Firenze, Florence (Italy), ²Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali (DiSAAA-a) -Università di Pisa, Pisa (Italy), ³Istituto di Fisica Applicata "Nello Carrara"–CNR, Florence (Italy)

P2.2. Fruit Ripening Studied by Optical Spectroscopic Techniques

Jing Huang¹, Hao Zhang¹, Tianqi Li¹, Huiying Lin¹, Guangyu Zhao¹, Liang Mei², Sune Svanberg^{1,2}, Katarina Svanberg^{1,2}

¹COER, South China Normal University, Guangzhou (China), ²Lund Laser Centre, Lund University (Sweden)

P2.3. Optical Remote Sensing of Flying Insects

Mikkel Brydegaard¹, Tianqi Li², Shiming Zhu², Guangyu Zhao², Sune Svanberg^{1,2} ¹Lund Laser Centre, Lund University (Sweden), ²COER, South China Normal University, Guangzhou (China)

P2.4. Array of Differential Photodiodes for Lab-On-Chip Applications

M. Carpentiero¹, E. Parisi¹, G. Petrucci¹, D. Caputo¹, A. Nascetti¹, G. de Cesare¹ ¹DIET University of Rome "La Sapienza", Rome (Italy), ²DIAEE University of Rome "La Sapienza" Rome (Italy)

P2.5. Dispersion Compensation of 40 Gb/s Data by Phase Conjugation in Slow Light Engineered Chalcogenide and Silicon Photonic Crystal Waveguides

Farshid Koohi-Kamali¹, Majid Ebnali-Heidari¹, Mohammad Kazem Moravvej-Farshi² ¹Shahrekord University Shahrekord (Iran), ²Advanced Devices Simulation Laboratory, Faculty of Electrical and Computer Engineering, Tarbiat Modares University Tehran (Iran)

P2.6. Optical Microfibre Sensor Incorporating Alloy Nanoparticles

Lin Bo¹, Yuliya Semenova¹, Pengfei Wang¹, João Conde², Furong Tian³, Benjamin Schazmann⁴, and Gerald Farrell¹

¹Photonics Research Centre, Dublin Institute of Technology, Dublin (Ireland), ²Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge (USA), ³Focas Research Institute, Dublin Institute of

Technology, Dublin (Ireland), ⁴School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Dublin (Ireland)

P2.7. Reflection Type Long Period Fiber Grating Biosensor for Real Time Thyroglobulin Detection as Differentiated Thyroid Cancer Biomarker: The "Smart Health" Project

Renato Severino¹, Giuseppe Quero¹, Patrizio Vaiano¹, Alessandra Boniello¹, Marco Consales¹, Menotti Ruvo², Annamaria Sandomenico², Anna Borriello³, Simona Zuppolini³, Laura Diodato³, Antonello Cutolo¹, Andrea Cusano¹

¹Optoelectronic Division, Dept. of Engineering, University of Sannio, Benevento (Italy), ²Istituto di Biostrutture e Bioimmagini, National Research Council, Naples (Italy), ³Istituto per i Polimeri Compositi e Biomateriali, National Research Council, Portici (Italy)

P2.8. All Optical Ferrule-Top Sensor for Indentation Measurements of Very Soft Biological Tissues

N. Antonovaite¹, S.V. Beekmans¹, H. van Hoorn¹, L. Beex-Osborn², E.M. Hol², W.J. Wadman², D. Iannuzzi¹

¹Department of Physics and Astronomy and LaserLaB, VU Amsterdam (The Netherlands), ²Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam (The Netherlands)

P2.9. Development of a Fiber-top Controlled Adaptable Stiffness Needle Beekmans SV¹, van den Dobbelsteen J², Iannuzzi D¹

¹Biophotonics and Medical Imaging, VU Laserlab, VU University Amsterdam (The Netherlands), ²Department of BioMechanical Engineering, University of Technology. Delft (The Netherlands)

P2.10. Graphene Oxide/ Silver Nanocube Composites for SERS Detection of Biomolecules

Martina Banchelli¹, Paolo Matteini¹, Gabriella Caminati², Bruno Tiribilli³, Roberto Pini¹ ¹Institute of Applied Physics IFAC-CNR, Florence (Italy), ²Department of Chemistry and CSGI, University of Florence, Sesto Fiorentino (Italy), ³Institute for Complex Systems CNR, Florence (Italy)

P2.11. Multiplexed SOI Ring Resonators for Real-Time Protein Detection Manuel Mendez-Astudillo^{1,2}, Danny Volkman¹, Matthias Jäger¹ ¹Technische Universität Berlin (Gemany), ² Waseda University, Shinjuku, Tokyo (Japan)

P2.12. Microstructured Waveguides for Express Analysis of Water, Coffee, Tea and Wine and Spirit

Anastasiya A. Zanishevskaya^{1,2}, Andrey A. Shuvalov^{1,2}, Yulia S. Skibina^{1,2}, Valery V. Tuchin^{2,3,4}

¹SPE Nanostructured Glass Technology, Saratov (Russia), ²Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov (Russia),

³Institute of Precise Mechanics and Control RAS, Saratov (Russia), ⁴Laboratory of Biophotonics, Tomsk State University, Tomsk (Russia)

- P2.13. Gold&Nanodiamond: New Multifunctional Tools for SERS Application Giacomo Reina¹, Serena Lenti¹, Emanuela Tamburri¹, Stefano Gay¹, Angelo Gismondi², Maria Letizia Terranova¹, Silvia Orlanducci¹
 ¹Dip. di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Roma (Italy),
 ²Dip. di Biologia, Università di Roma Tor Vergata, Roma (Italy)
- P2.14. Magneto-Optical Localised-SPR a Novel Sensing Platform to Characterize New Nanostructured Materials for Sensing Maria Grazia Manera¹, Roberto Rella¹

¹CNR IMM Lecce (Italy)

- P2.15. POCT Immunosuppressants Monitoring by a Novel Optical Biochip
 B. Adinolfi¹, C. Berrettoni^{1,2}, S. Berneschi¹, R. Bernini³, K. Cremer⁴, C. Gartner⁴, A. Giannetti¹, I.A. Grimaldi³, G. Persichetti³, G. Testa³, S. Tombelli¹, C. Trono¹, F. Baldini¹
 ¹Istituto di Fisica Applicata Nello Carrara, Sesto Fiorentino (Italy), ²Dept. Information Engineering and Mathematics, Siena University, Siena (Italy), ³Institute for Electromagnetic Sensing of the Environment, CNR, Naples (Italy), ⁴Microfluidic ChipShop GmnH, Jena (Germany)
- P2.16. Towards Feasible Label-Free Biosensing by Means of Long Period Fibre Gratings: Performance Assessment Using IgG/Anti-IgG Model Assay
 F. Chiavaioli¹, C. Trono¹, P. Biswas², S. Bandyopadhyay², N. Basumallick², K. Dasgupta², A. Giannetti¹, S. Tombelli¹, S. Jana², S. Bera², A. Mallick², F. Baldini¹

¹CNR-IFAC, Institute of Applied Physics "Nello Carrara", Sesto Fiorentino, (Italy), ²CSIR-CGCRI, Central Glass and Ceramic Research Institute, Kolkata (India)

- **P2.17. Phosphate Glasses and Optical Fibres for Bio-Photonic Application** Edoardo Ceci Ginistrelli¹, Diego Pugliese¹, Simone Berneschi², Nadia Boetti¹, Giorgia Novajra¹, Chiara Vitale-Brovarone¹, Joris Lousteau³, Francesco Baldini², Daniel Milanese¹ ¹Politecnico di Torino, Torino (Italy), ²Istituto di Fisica Applicata "Nello Carrara", Florence (Italy), ³Optoelectronics Research Centre, University of Southampton, Southampton (UK)
- P2.18. Preparation and Characterization of 3D Hyaluronic Scaffolds with Controlled Optical Properties for Biomedical Applications

M. Lepore¹, M. Portaccio¹, I. Delfino², A. La Gatta¹, A. D'Agostino¹, E. Izzo¹, C. Schiraldi¹ ¹Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Naples (Italy), ²Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Viterbo (Italy)

P2.19. Investigation of Fluorescence Properties of Cationic (Phenothiazinyl)Vinylpyridinium Dye Attached Electrostatically to Multilayered Polyelectrolyte-Coated Gold Nanorods

Ana-Maria Gabudean¹, Luiza Gaina², Luminita Silaghi-Dumitrescu², Simion Astilean¹

¹Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences and Faculty of Physics, Babes-Bolyai University, Cluj-Napoca (Romania), ²Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, (Romania)

P2.20. Gelatin-Assisted Synthesis of Gold Nanoparticles and Investigation of their Biocompatibility and Osteogenic Effect on Osteoblast Cells

Sorina Suarasan¹, Monica Focsan¹, Olga Soritau², Dana Maniu¹, Simion Astilean¹ ¹Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics, Babes-Bolyai University, Cluj-Napoca (Romania), ²Radiobiology and Tumor Biology Laboratory, Oncological Institute "Prof Dr. Ion Chricuță", Cluj-Napoca (Romania)

P2.21. Sensitivity Improved Plasmonic Platform for Specific Biomarkers Detection Monica Focsan¹, Andreea Campu¹, Cosmin Leordean¹, Monica Potara¹, Ana Gabudean¹, Dana Maniu¹, Simion Astilean¹

¹Interdisciplinary Research Institute in Bio-Nano-Sciences, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca (Romania)

P2.22. 5-Fluorouracil Loaded Silver Nanotriangles as Highly Effective Agents for Image-Guided Therapy of Pancreatic Cancer Cells

Monica Potara¹, Timea Simon¹, Emilia Licarete², Simion Astilean¹ ¹Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences and Faculty of Physics, Babes-Bolyai University, Cluj-Napoca (Romania), ²Molecular Biology Center, Interdisciplinary Research Institute in Bio-Nano-Sciences and Faculty of Biology, Babes-Bolyai University, Cluj-Napoca (Romania)

P2.23. Fabrication of Pluronic Encapsulated Porphyrin - Gold Nanoparticles and Investigation of their Potential in Photodynamic Therapy

Timea Simon¹, Ana-Maria Gabudean¹, Emilia Licarete², Luiza Gaina³, Luminita Silaghi-Dumitrescu³, Simion Astilean¹

¹Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences and Faculty of Physics, Babes-Bolyai University, Cluj-Napoca (Romania), ²Molecular Biology Center, Interdisciplinary Research Institute in Bio-Nano-Sciences and Faculty of Biology, Babes-Bolyai University, Cluj-Napoca (Romania), ³Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca (Romania)

P2.24. Spatio-Temporal Thermal Processes Induced by Pulsed Laser Irradiation of Medium Doped by Nanoparticles

Alexander N. Yakunin^{1,2}, Yuri A. Avetisyan^{1,2}, Alexey A. Bykov² and Valery V. Tuchin² ¹Russian Academy of Sciences, Institute of Precise Mechanics and Control, Saratov (Russia), ²N.G. Chernyshevsky Saratov State University, Saratov (Russia)

P2.25. Optical Measurements of Glycerol Diffusion in Skin Tissue

Ali Jaafar Sadeq¹, Alexey N. Bashkatov¹, Daria K. Tuchina¹, Elina A. Genina¹, Valery V. Tuchin¹

¹Saratov State University, Saratov (Russia)

P2.26. Blood Plasma of Patients with Myelodysplastic Syndromes analysed by Surface Plasmon Resonance Imaging and Mass Spectrometry

Jan E. Dyr¹, Leona Chrastinova¹, Marketa Bockova², Hana Vaisocherova², Ondrej Pastva¹, Jiri Suttnar¹, Roman Kotlin¹, Jiri Homola²

¹Institute of Hematology and Blood Transfusion, Prague (Czech Republic), ²Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

P2.27. Influence of Gold Nanorods Parameters on Photoacoustic Conversion Stability Lucia Cavigli¹, Sarah Lai¹, Marella de Angelis¹, Fulvio Ratto¹, Paolo Matteini¹, Francesca Rossi¹, Sonia Centi¹, Roberto Pini¹

¹Institute of Applied Physics IFAC-CNR, Florence (Italy)

P2.28. Feasibility of Plasmonic Cellular Vehicles for Photothermal and Photoacoustic Applications

C. Borri^{1,2}, L. Cavigli¹, A. Cini^{1,3}, S. Centi¹, S. Lai¹, F. Tatini¹, F. Ratto¹, M. de Angelis¹, P. Matteini¹, S. Colagrande², R. Pini¹

¹Institute of Applied Physics IFAC-CNR, Florence (Italy), ²Dipartimento di Scienze Biomediche, Sperimentali e Cliniche Mario Serio, Università di Firenze, Florence (Italy), ³Dipartimento di Fisica e Astronomia, Università di Firenze, Sesto Fiorentino (Italy)

P2.29. Biological Profiles of Plasmonic Particles Modified with a Cell Penetrating Peptide

S. Lai¹, S. Centi¹, C. Borri^{1,2}, F. Ratto¹, F. Tatini¹, S. Colagrande², R. Pini¹ ¹Institute of Applied Physics IFAC-CNR, Florence (Italy), ²Dipartimento di Scienze Biomediche, Sperimentali e Cliniche Mario Serio, Università di Firenze, Florence (Italy)

P2.30. Planar Optical Antenna to Direct Light Emission

Simona Checcucci¹, Sahrish Rizvi¹, Pietro Lombardi^{1,2}, Fabrizio Sgrignuoli^{1,3}, Costanza Toninelli^{1,2}, Mario Agio^{1,2,4}

¹European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino (Italy), ²National Institute of Optics (CNR-INO), Firenze LENS Unit, Sesto Fiorentino, (Italy), ³Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, (Italy), ⁴Department of Physics, University of Siegen, Siegen, (Germany)

Instructions for Presenters

Oral Presentations

Invited talk: 20 minutes presentation + 5 minutes discussion. Contributed talk: 12 minutes presentation + 3 minutes discussion.

Poster Presentations

Posters may be set up in the morning before the coffee break. Authors are requested to be present at their posters during the poster session.

Poster size

width: max 100 cm. height: min 85 cm, max 116 cm.

Information For Partecipants

CONFERENCE VENUE

The conference is hosted at the "Nello Carrara" Institute of Applied Physics (IFAC) within the Florence Research Area of the National Research Council (CNR).

A shuttle bus service from Santa Maria Novella train station to the conference venue will be

organized every day, in the morning and in the afternoon at the end of scientific sessions. Alternatively, you can reach the Conference Area, which is located at the "Polo Scientifico di Sesto Fiorentino" by bus no. 66 from Sesto Fiorentino train station or no. 59 from Firenze Rifredi station. Bus tickets are sold in tobacco shops or at the ATAF ticket office within Santa Maria

Novella. Tickets can be purchased also onboard, but at a higher price. Please note that the public transportations can take up to one hour to reach the Conference venue, because of the combination between train and bus timetables, which vary during the day. Therefore, we encourage the use of the shuttle for your convenience.

SOCIAL DINNER

BioPhotonics 2015 social dinner will take place on May 21th at the restaurant "Lo Spaccio", inside the "Fattoria di Maiano".

The Fattoria, whose origins date back to 1400, is located on a unique position on Fiesole hills. It is a completely organic agricultural estate, which covers an area of nearly 300 hectares mainly used for growing olives.

Just inside the estate, the restaurant Lo Spaccio is a corner of flavour where you can taste typical Tuscan delicatessen. Outfitted with a panoramic terrace and cosy inside rooms, the restaurant will be

the perfect location to enjoy a cultural and scientific exchange during the social dinner.